Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.115
1.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720246

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Glycine max , Melatonin , Stress, Physiological , Transcriptome , Melatonin/pharmacology , Glycine max/genetics , Glycine max/drug effects , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/drug effects , Gene Expression Regulation, Plant/drug effects , Metabolomics , Gene Expression Profiling , Alkalies , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Metabolome/drug effects
2.
BMC Plant Biol ; 24(1): 385, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724918

Waterlogging stress is one of the major abiotic stresses affecting the productivity and quality of many crops worldwide. However, the mechanisms of waterlogging tolerance are still elusive in barley. In this study, we identify key differentially expressed genes (DEGs) and differential metabolites (DM) that mediate distinct waterlogging tolerance strategies in leaf and root of two barley varieties with contrasting waterlogging tolerance under different waterlogging treatments. Transcriptome profiling revealed that the response of roots was more distinct than that of leaves in both varieties, in which the number of downregulated genes in roots was 7.41-fold higher than that in leaves of waterlogging sensitive variety after 72 h of waterlogging stress. We also found the number of waterlogging stress-induced upregulated DEGs in the waterlogging tolerant variety was higher than that of the waterlogging sensitive variety in both leaves and roots in 1 h and 72 h treatment. This suggested the waterlogging tolerant variety may respond more quickly to waterlogging stress. Meanwhile, phenylpropanoid biosynthesis pathway was identified to play critical roles in waterlogging tolerant variety by improving cell wall biogenesis and peroxidase activity through DEGs such as Peroxidase (PERs) and Cinnamoyl-CoA reductases (CCRs) to improve resistance to waterlogging. Based on metabolomic and transcriptomic analysis, we found the waterlogging tolerant variety can better alleviate the energy deficiency via higher sugar content, reduced lactate accumulation, and improved ethanol fermentation activity compared to the waterlogging sensitive variety. In summary, our results provide waterlogging tolerance strategies in barley to guide the development of elite genetic resources towards waterlogging-tolerant crop varieties.


Gene Expression Profiling , Hordeum , Metabolome , Stress, Physiological , Transcriptome , Hordeum/genetics , Hordeum/physiology , Hordeum/metabolism , Stress, Physiological/genetics , Water/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
BMC Genomics ; 25(1): 460, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730330

BACKGROUND: Zingiber officinale Roscoe, colloquially known as ginger, is a crop of significant medicinal and culinary value that frequently encounters adversity stemming from inhospitable environmental conditions. The MYB transcription factors have garnered recognition for their pivotal role in orchestrating a multitude of plant biological pathways. Nevertheless, the enumeration and characterization of the MYBs within Z. officinale Roscoe remains unknown. This study embarks on a genome-wide scrutiny of the MYB gene lineage in ginger, with the aim of cataloging all ZoMYB genes implicated in the biosynthesis of gingerols and curcuminoids, and elucidating their potential regulatory mechanisms in counteracting abiotic stress, thereby influencing ginger growth and development. RESULTS: In this study, we identified an MYB gene family comprising 231 members in ginger genome. This ensemble comprises 74 singular-repeat MYBs (1R-MYB), 156 double-repeat MYBs (R2R3-MYB), and a solitary triple-repeat MYB (R1R2R3-MYB). Moreover, a comprehensive analysis encompassing the sequence features, conserved protein motifs, phylogenetic relationships, chromosome location, and gene duplication events of the ZoMYBs was conducted. We classified ZoMYBs into 37 groups, congruent with the number of conserved domains and gene structure analysis. Additionally, the expression profiles of ZoMYBs during development and under various stresses, including ABA, cold, drought, heat, and salt, were investigated in ginger utilizing both RNA-seq data and qRT-PCR analysis. CONCLUSION: This work provides a comprehensive understanding of the MYB family in ginger and lays the foundation for the future investigation of the potential functions of ZoMYB genes in ginger growth, development and abiotic stress tolerance of ginger.


Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Zingiber officinale , Zingiber officinale/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
4.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730341

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Genes, Plant , Real-Time Polymerase Chain Reaction , Seedlings , Seedlings/genetics , Cyperaceae/genetics , Reference Standards , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Droughts , Reproducibility of Results , Abscisic Acid/metabolism , Gibberellins/metabolism
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731831

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Salt Tolerance , Pyrus/genetics , Pyrus/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Nicotiana/genetics , Nicotiana/metabolism , Amino Acid Sequence , Peptides/metabolism , Peptides/genetics , Stress, Physiological/genetics , Plants, Genetically Modified/genetics
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731920

Expansins, a class of cell-wall-loosening proteins that regulate plant growth and stress resistance, have been studied in a variety of plant species. However, little is known about the Expansins present in alfalfa (Medicago sativa L.) due to the complexity of its tetraploidy. Based on the alfalfa (cultivar "XinjiangDaye") reference genome, we identified 168 Expansin members (MsEXPs). Phylogenetic analysis showed that MsEXPs consist of four subfamilies: MsEXPAs (123), MsEXPBs (25), MsEXLAs (2), and MsEXLBs (18). MsEXPAs, which account for 73.2% of MsEXPs, and are divided into twelve groups (EXPA-I-EXPA-XII). Of these, EXPA-XI members are specific to Medicago trunctula and alfalfa. Gene composition analysis revealed that the members of each individual subfamily shared a similar structure. Interestingly, about 56.3% of the cis-acting elements were predicted to be associated with abiotic stress, and the majority were MYB- and MYC-binding motifs, accounting for 33.9% and 36.0%, respectively. Our short-term treatment (≤24 h) with NaCl (200 mM) or PEG (polyethylene glycol, 15%) showed that the transcriptional levels of 12 MsEXPs in seedlings were significantly altered at the tested time point(s), indicating that MsEXPs are osmotic-responsive. These findings imply the potential functions of MsEXPs in alfalfa adaptation to high salinity and/or drought. Future studies on MsEXP expression profiles under long-term (>24 h) stress treatment would provide valuable information on their involvement in the response of alfalfa to abiotic stress.


Gene Expression Regulation, Plant , Genome, Plant , Medicago sativa , Phylogeny , Plant Proteins , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/classification , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Multigene Family , Gene Expression Profiling
7.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732040

Currently, Mediterranean forests are experiencing the deleterious effects of global warming, which mainly include increased temperatures and decreased precipitation in the region. Relict Abies pinsapo fir forests, endemic in the southern Iberian Peninsula, are especially sensitive to these recent environmental disturbances, and identifying the genes involved in the response of this endangered tree species to climate-driven stresses is of paramount importance for mitigating their effects. Genomic resources for A. pinsapo allow for the analysis of candidate genes reacting to warming and aridity in their natural habitats. Several members of the complex gene families encoding late embryogenesis abundant proteins (LEAs) and heat shock proteins (HSPs) have been found to exhibit differential expression patterns between wet and dry seasons when samples from distinct geographical locations and dissimilar exposures to the effects of climate change were analyzed. The observed changes were more perceptible in the roots of trees, particularly in declining forests distributed at lower altitudes in the more vulnerable mountains. These findings align with previous studies and lay the groundwork for further research on the molecular level. Molecular and genomic approaches offer valuable insights for mitigating climate stress and safeguarding this endangered conifer.


Abies , Climate Change , Gene Expression Regulation, Plant , Stress, Physiological , Stress, Physiological/genetics , Abies/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Forests
8.
BMC Plant Biol ; 24(1): 400, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745278

XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.


Brassica napus , Gene Expression Regulation, Plant , Glycosyltransferases , Multigene Family , Phylogeny , Stress, Physiological , Brassica napus/genetics , Brassica napus/enzymology , Stress, Physiological/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Arabidopsis/genetics , Arabidopsis/enzymology
9.
Planta ; 259(6): 151, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733553

MAIN CONCLUSION: The genetic diversity in tetraploid wheat provides a genetic pool for improving wheat productivity and environmental resilience. The tetraploid wheat had strong N uptake, translocation, and assimilation capacity under N deficit stress, thus alleviating growth inhibition and plant N loss to maintain healthy development and adapt to environments with low N inputs. Tetraploid wheat with a rich genetic variability provides an indispensable genetic pool for improving wheat yield. Mining the physiological mechanisms of tetraploid wheat in response to nitrogen (N) deficit stress is important for low-N-tolerant wheat breeding. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese spring (CS, hexaploid) as materials. We investigated the differences in the response of root morphology, leaf and root N accumulation, N uptake, translocation, and assimilation-related enzymes and gene expression in wheat seedlings of different ploidy under N deficit stress through hydroponic experiments. The tetraploid wheat (Kronos) had stronger adaptability to N deficit stress than the hexaploid wheats (YM25, CS). Kronos had better root growth under low N stress, expanding the N uptake area and enhancing N uptake to maintain higher NO3- and soluble protein contents. Kronos exhibited high TaNRT1.1, TaNRT2.1, and TaNRT2.2 expression in roots, which promoted NO3- uptake, and high TaNRT1.5 and TaNRT1.8 expression in roots and leaves enhanced NO3- translocation to the aboveground. NR and GS activity in roots and leaves of Kronos was higher by increasing the expression of TANIA2, TAGS1, and TAGS2, which enhanced the reduction and assimilation of NO3- as well as the re-assimilation of photorespiratory-released NH4+. Overall, Kronos had strong N uptake, translocation, and assimilation capacity under N deficit stress, alleviating growth inhibition and plant N loss and thus maintaining a healthy development. This study reveals the physiological mechanisms of tetraploid wheat that improve nitrogen uptake and assimilation adaptation under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Nitrogen , Plant Roots , Stress, Physiological , Tetraploidy , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Triticum/physiology , Nitrogen/metabolism , Stress, Physiological/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/physiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/physiology , Adaptation, Physiological/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/metabolism , Gene Expression Regulation, Plant
10.
BMC Plant Biol ; 24(1): 376, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714947

BACKGROUND: Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS: A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS: Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.


Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Sodium Chloride/pharmacology , Phylogeny , Sodium Bicarbonate/pharmacology , Salt Stress/genetics , Stress, Physiological/genetics , Genome, Plant
11.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Article En | MEDLINE | ID: mdl-38710997

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Cadmium , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycine max , Stress, Physiological , Glycine max/genetics , Glycine max/drug effects , Glycine max/metabolism , Cadmium/toxicity , Cadmium/metabolism , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Stress, Physiological/genetics , Genotype , Transcriptome/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics
12.
Braz J Biol ; 84: e282495, 2024.
Article En | MEDLINE | ID: mdl-38747865

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses. The aim of this work was to screen and select cold and blast resistant rice breeding lines (RBLs) using molecular markers. Molecular screening of RBLs and parental varieties to cold tolerance was carried out using markers RM24545, RM1377, RM231 and RM569 associated with QTLs (qPSST-3, qPSST-7, qPSST-9). It was discovered that the presence of three QTLs characterizes the cold resistance of studied genotypes, and the absence of one of them leads to cold sensitivity. As a result, 21 cold-resistant out of the 28 studied RBLs were identified. These cold resistant 21 RBLs were further tested to blast resistance using markers Pi-ta, Pita3, Z56592, 195R-1, NMSMPi9-1, TRS26, Pikh MAS, MSM6, 9871.T7E2b, RM224 and RM1233. It was revealed that 16 RBLs from 21 studied lines contain 5-6 blast resistance genes. In accordance with the blast resistance strategy, the presence of 5 or more genes ensures the formation of stable resistance to Magnaporthe oryzae. Thus, 16 lines resistant to multiple stresses, such as cold and blast disease were developed. It should be noted that 6 of these selected lines are high-yielding, which is very important in rice breeding program. These RBLs can be used in breeding process as starting lines, germplasm exchange as a source of resistant genes for the development of new rice varieties resistant to multiple stress factors.


Oryza , Plant Breeding , Stress, Physiological , Oryza/genetics , Oryza/microbiology , Oryza/physiology , Stress, Physiological/genetics , Disease Resistance/genetics , Quantitative Trait Loci/genetics , Genotype , Genetic Markers , Plant Diseases/genetics , Plant Diseases/microbiology , Cold Temperature
13.
PLoS Biol ; 22(5): e3002620, 2024 May.
Article En | MEDLINE | ID: mdl-38743647

Animals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer. By comparing gene expression in 7 somatic tissues procured from wild COTS sampled on the Great Barrier Reef, we identified more than 2,000 protein-coding genes that change significantly between summer and winter. COTS genes that appear to mediate conspecific communication, including both signalling factors released into the surrounding sea water and cell surface receptors, are up-regulated in external secretory and sensory tissues in the summer, often in a sex-specific manner. Sexually dimorphic gene expression appears to be underpinned by sex- and season-specific transcription factors (TFs) and gene regulatory programs. There are over 100 TFs that are seasonally expressed, 87% of which are significantly up-regulated in the summer. Six nuclear receptors are up-regulated in all tissues in the summer, suggesting that systemic seasonal changes are hormonally controlled, as in vertebrates. Unexpectedly, there is a suite of stress-related chaperone proteins and TFs, including HIFa, ATF3, C/EBP, CREB, and NF-κB, that are uniquely and widely co-expressed in gravid females. The up-regulation of these stress proteins in the summer suggests the demands of oogenesis in this highly fecund starfish affects protein stability and turnover in somatic cells. Together, these circannual changes in gene expression provide novel insights into seasonal changes in this coral reef pest and have the potential to identify vulnerabilities for targeted biocontrol.


Reproduction , Seasons , Starfish , Animals , Starfish/genetics , Starfish/metabolism , Starfish/physiology , Reproduction/genetics , Female , Male , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Factors/metabolism , Transcription Factors/genetics , Organ Specificity/genetics , Coral Reefs
14.
Plant Cell Rep ; 43(6): 142, 2024 May 15.
Article En | MEDLINE | ID: mdl-38744747

KEY MESSAGE: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.


Flowers , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Secale , Flowers/genetics , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Secale/genetics , Secale/physiology , Cold Temperature , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Genome, Plant/genetics , Multigene Family , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , PHD Zinc Fingers/genetics
15.
Sci Rep ; 14(1): 11050, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745054

Phosphorus (P) is a crucial macronutrient for plant growth and development. Basic metabolic processes regulate growth; however, the molecular detail of these pathways under low phosphorous (LP) in wheat is still unclear. This study aims to elucidate the varied regulatory pathways responses to LP stress in wheat genotypes. Phenotypic, physiological, and transcriptome analyses were conducted on Fielder (P efficient) and Ardito (P inefficient) wheat genotypes after four days of normal phosphorous (NP) and LP stress. In response to LP, Fielder outperformed Ardito, displaying higher chlorophyll content-SPAD values (13%), plant height (45%), stem diameter (12%), shoot dry weight (42%), and root biomass (75%). Root structure analysis revealed that Fielder had greater total root length (50%), surface area (56%), volume (15%), and diameter (4%) than Ardito under LP. These findings highlight Fielder's superior performance and adaptation to LP stress. Transcriptome analysis of wheat genotype roots identified 3029 differentially expressed genes (DEGs) in Fielder and 1430 in Ardito, highlighting LP-induced changes. Key DEGs include acid phosphatases (PAPs), phosphate transporters (PHT1 and PHO1), SPX, and transcription factors (MYB, bHLH, and WRKY). KEGG enrichment analysis revealed key pathways like plant hormones signal transduction, biosynthesis of secondary metabolites, and carbohydrate biosynthesis metabolism. This study unveils crucial genes and the intricate regulatory process in wheat's response to LP stress, offering genetic insights for enhancing plant P utilization efficiency.


Adaptation, Physiological , Gene Expression Regulation, Plant , Phosphorus , Plant Roots , Transcriptome , Triticum , Triticum/genetics , Triticum/metabolism , Triticum/growth & development , Phosphorus/deficiency , Phosphorus/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Adaptation, Physiological/genetics , Stress, Physiological/genetics , Gene Expression Profiling , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Phenotype
16.
BMC Genomics ; 25(1): 469, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745121

Carotenoid cleavage oxygenases (CCOs) enzymes play a vital role in plant growth and development through the synthesis of apocarotenoids and their derivative. These chemicals are necessary for flower and fruit coloration, as well as the manufacture of plant hormones such as abscisic acid (ABA) and strigolactones, which control a variety of physiological processes. The CCOs gene family has not been characterized in Arachis hypogaea. Genome mining of A. hypogaea identifies 24 AhCCO gene members. The AhCCO gene family was divided into two subgroups based on the recent study of the Arabidopsis thaliana CCO gene family classification system. Twenty-three AhCCO genes, constituting 95.8% of the total, were regulated by 29 miRNAs, underscoring the significance of microRNAs (miRNAs) in governing gene expression in peanuts. AhCCD19 is the only gene that lacks a miRNA target site. The physicochemical characteristics of CCO genes and their molecular weights and isoelectric points were studied further. The genes were then characterized regarding chromosomal distribution, structure, and promoter cis-elements. Light, stress development, drought stress, and hormone responsiveness were discovered to be associated with AhCCO genes, which can be utilized in developing more resilient crops. The investigation also showed the cellular location of the encoded proteins and discovered that the peanut carotenoid oxygenase gene family's expansion was most likely the result of tandem, segmental, and whole-genome duplication events. The localization expresses the abundance of genes mostly in the cytoplasm and chloroplast. Expression analysis shows that AhCCD7 and AhCCD14 genes show the maximum expression in the apical meristem, lateral leaf, and pentafoliate leaf development, while AhNCED9 and AhNCED13 express in response to Aspergillus flavus resistance. This knowledge throws light on the evolutionary history of the AhCCO gene family and may help researchers better understand the molecular processes behind gene duplication occurrences in plants. An integrated synteny study was used to find orthologous carotenoid oxygenase genes in A. hypogaea, whereas Arabidopsis thaliana and Beta vulgaris were used as references for the functional characterization of peanut CCO genes. These studies provide a foundation for future research on the regulation and functions of this gene family. This information provides valuable insights into the genetic regulation of AhCCO genes. This technology could create molecular markers for breeding programs to develop new peanut lines.


Arachis , Gene Expression Regulation, Plant , Multigene Family , Oxygenases , Stress, Physiological , Arachis/genetics , Arachis/enzymology , Stress, Physiological/genetics , Oxygenases/genetics , Oxygenases/metabolism , Carotenoids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phylogeny , Genome, Plant , Promoter Regions, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism
17.
BMC Plant Biol ; 24(1): 396, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745125

BACKGROUND: Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS: This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS: DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.


Dendrobium , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , beta-Fructofuranosidase , Dendrobium/genetics , Dendrobium/enzymology , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Stress, Physiological/genetics , Genes, Plant
18.
BMC Genomics ; 25(1): 468, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745142

BACKGROUND: Plant-specific TIFY proteins are widely found in terrestrial plants and play important roles in plant adversity responses. Although the genome of loquat at the chromosome level has been published, studies on the TIFY family in loquat are lacking. Therefore, the EjTIFY gene family was bioinformatically analyzed by constructing a phylogenetic tree, chromosomal localization, gene structure, and adversity expression profiling in this study. RESULTS: Twenty-six EjTIFY genes were identified and categorized into four subfamilies (ZML, JAZ, PPD, and TIFY) based on their structural domains. Twenty-four EjTIFY genes were irregularly distributed on 11 of the 17 chromosomes, and the remaining two genes were distributed in fragments. We identified 15 covariate TIFY gene pairs in the loquat genome, 13 of which were involved in large-scale interchromosomal segmental duplication events, and two of which were involved in tandem duplication events. Many abiotic stress cis-elements were widely present in the promoter region. Analysis of the Ka/Ks ratio showed that the paralogous homologs of the EjTIFY family were mainly subjected to purifying selection. Analysis of the RNA-seq data revealed that a total of five differentially expressed genes (DEGs) were expressed in the shoots under gibberellin treatment, whereas only one gene was significantly differentially expressed in the leaves; under both low-temperature and high-temperature stresses, there were significantly differentially expressed genes, and the EjJAZ15 gene was significantly upregulated under both low- and high-temperature stress. RNA-seq and qRT-PCR expression analysis under salt stress conditions revealed that EjJAZ2, EjJAZ4, and EjJAZ9 responded to salt stress in loquat plants, which promoted resistance to salt stress through the JA pathway. The response model of the TIFY genes in the jasmonic acid pathway under salt stress in loquat was systematically summarized. CONCLUSIONS: These results provide a theoretical basis for exploring the characteristics and functions of additional EjTIFY genes in the future. This study also provides a theoretical basis for further research on breeding for salt stress resistance in loquat. RT-qPCR analysis revealed that the expression of one of the three EjTIFY genes increased and the expression of two decreased under salt stress conditions, suggesting that EjTIFY exhibited different expression patterns under salt stress conditions.


Eriobotrya , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Eriobotrya/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Chromosomes, Plant/genetics
19.
BMC Genomics ; 25(1): 465, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741087

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Droughts , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Phylogeny , Plants, Genetically Modified , Arabidopsis/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics
20.
PeerJ ; 12: e17371, 2024.
Article En | MEDLINE | ID: mdl-38708338

Background: Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods: P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions: Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.


Acetates , Basic-Leucine Zipper Transcription Factors , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Phylogeny , Platycodon , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Acetates/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant/drug effects , Platycodon/genetics , Platycodon/metabolism , Stress, Physiological/genetics , Stress, Physiological/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Plant Growth Regulators/pharmacology
...